
Journal of Sound and Vibration (1998) 214(5), 915–940
Article No. sv981583

NON-LINEAR GALLOPING OF SAGGED CABLES
IN 1:2 INTERNAL RESONANCE

A. L

Dipartimento di Ingegneria delle Strutture, delle Acque e del Terreno,
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The aeroelastic behaviour of a flexible elastic suspended cable driven by mean wind
speed, blowing perpendicularly to the cable’s plane, is investigated. By applying the
Galerkin procedure to the partial differential equations of motion and using an in-plane
and an out-of-plane mode as shape functions, a two-d.o.f. model is derived. The discrete
equations are coupled through quadratic and cubic terms arising both from geometric and
aerodynamic effects. The associated linear frequencies are assumed to be in an almost 1:2
ratio, so that internal resonance occurs. The multiple scale perturbation method is
employed to obtain a set of three amplitude modulation equations, whose coefficients
depend on the mean wind speed, which is assumed as control parameter. Two perturbative
solutions are developed, each based on a different assumption about the order of magnitude
of the static displacements, produced by steady state wind forces. Analytical results are then
compared with direct numerical integrations of discrete non-linear equations. By
performing a bifurcation analysis, the existence of several equilibrium branches is proved.
The relative importance of geometric and aerodynamic non-linearities is discussed through
simplified models. The influence on critical and postcritical behaviour of several
parameters, including geometrical cable parameters, detuning and non-symmetric flow
effects, is investigated. The important role played by the steady state forces is highlighted.
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1. INTRODUCTION

Iced cables can experience self-excited aeroelastic oscillations of large amplitude due to
wind, mainly in the vertical plane. The problem has been widely studied in the literature
for slender beams or taut strings, both in linear and non-linear fields, by using simple
models with one or two-d.o.f. [1, 2]. Large galloping oscillations of suspended cables have
only recently been analyzed for a three-d.o.f. system [3]. In these works, however, only the
aerodynamic non-linearities have been taken into account, while geometric non-linearities
have been ignored (e.g. see reference [3], where displacements up to only second order have
been retained in the strain energy). However, geometric effects play an important role in
describing the dynamic behaviour of cables, as already highlighted in many works on the
subject; see, e.g., references [4–6]. In particular, there is a strong coupling between in-plane
and out-of-plane motion when internal resonance conditions occur. So it seems important
to propose a new model in which both geometric and aerodynamic non-linearities are
considered.
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In this paper a study is presented of the response of a flexible elastic suspended cable
in internal resonance condition of 1:2 type, excited by a wind flow perpendicular to the
plane of the cable. Preliminary results on the subject have been presented by the authors
in reference [7]. The wind loads are determined in a quasi-static regime by considering
translational displacements only. Torsional effects are neglected since single cables usually
have a torsional frequency much higher than two flexural frequencies [8]. The aerodynamic
forces are assumed to be acting in the plane containing the cable cross-section in the
reference equilibrium configuration; therefore, the effects due to the change of geometry
and the longitudinal component of the forces are neglected. To analyze coupling
phenomena between in-plane and out-of-plane motions, a simple two-d.o.f. model is
derived from the continuous one via the Galerkin procedure, by taking one modal shape
in each plane. The cable is assumed to be at the first ‘‘cross-over’’ point [9], so that linear
frequencies are almost in a 1:2 ratio. The discrete non-linear equations of motion are
studied through the multiple scales perturbation method. Particular attention is devoted
to the problem of how to order correctly, in the perturbation scheme, the displacements
produced by the steady state wind forces. Two assumptions are made about the order of
magnitude of such static displacements, each leading to a set of amplitude modulation
equations with different coefficients. The validity of these assumptions is then discussed
by comparing analytical and numerical results. A bifurcation analysis of the amplitude
equilibrium paths reveals a very rich postcritical behaviour of the cable. Moreover, an
extensive parametric analysis makes it possible to discuss the reliability of simplified
models in which geometrical non-linearities, aerodynamic non-linearities and/or steady
state wind forces are in turn neglected.

2. EQUATIONS OF MOTION

Consider a heavy hyperelastic cable suspended between two fixed supports. The
equations governing the planar motion have been developed in reference [4], in Cartesian
co-ordinates; subsequently, they have been extended to three-dimensional motion, referred
to Frenet [5, 10] or Cartesian [11] triads. Here, the reference is to the Frenet triad in which
the aerodynamic forces can be more easily expressed. Let ui (i=1, 2, 3) be the displacement
components measured from the static equilibrium configuration (see Figure 1). The
dimensionless equations that govern the prevalently transversal motion of the cable in the
small curvature regime are [5, 12]:

[1+ ae]ũ01 + bf	 1 = p2ũ
..

1, [1+ ae]ũ02 + abe+ bf	 2 = p2ũ
..

2, (1)

where

e=(ũ'3 − bũ2)+ 1
2[ũ'22 + ũ'21 ], (2)

Figure 1. Cable configuration: C0 equilibrium configuration, C dynamic configuration; ei (i=1,2,3) binormal,
normal and tangential unit vectors; U uniform wind velocity.
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Figure 2. (a) Degrees of freedom and (b) aerodynamic forces on the cylinder in laminar flow; D=drag force,
L=lift force.

with relevant boundary conditions ũi (0, t)= ũi (1, t)=0. In equations (1) longitudinal
displacements ũ3 have been statically condensed and the following non-dimensional
quantities used:

ũi =
ui

L
, t	 =

p

LXT0

m
t, s̃=

s
L

, f	 i =
fi

mg
, a=

EA
T0

, b=
mgL
T0

. (3)

Here L is the cable length, t is time, T0 is the horizontal component of static tension, m
is the mass per unit length of the cable with its ice coating, s is the curvilinear abscissa,
fi are distributed dynamic force components, g is the acceleration due to gravity, EA is
the axial stiffness, e is the dynamic component of the Lagrangian strain when curvature
is small, and a and b are the dimensionless parameters which characterize the geometry
and elasticity of the cable. Dots and apices denote differentiations with respect to the
non-dimensional time and curvilinear abscissa, respectively. The tilde sign will be omitted
in the sequel.

The aerodynamic forces are determined referring to a spring-mounted damped rigid
cylinder of indefinite length with two translational d.o.f., subjected to a bidimensional
turbulent flow of uniform velocity U (see Figure 2). This model is a particular case of a
three-d.o.f. overall non-linear model developed in references [13–15]. In these references,
the along-wind and cross-wind components of turbulence have been explicitly considered;
here, instead, they are taken into account approximately by suitably altering the
aerodynamic coefficients [16]. In the quasi-static regime (i.e., at much lower oscillation
frequencies than the vortex-shedding frequency), the dimensional aerodynamic forces are
(see Figure 2)

f1(t)= 1
2rV2(t)b(cd (ga ) cos ga − cl (ga ) sin ga )= 1

2rV2(t)bcF1(ga ),

f2(t)= 1
2rV2(t)b(ca (ga ) sin ga + cl (ga ) cos ga )= 1

2rV2(t)bcF2(ga ), (4)

where r is the fluid density, b is a suitable reference length of the cylinder cross-section
(for instance, the bare cable diameter), cd and cl are the dimensionless drag and lift
coefficients, respectively, in the turbulent stream; in addition, cF1 and cF2 are the
longitudinal and lateral force coefficients, ga is the fluctuating angle of attack (positive
anticlockwise) and V is the relative velocity, both of which depend on the cylinder velocity.



.   . 918

By expanding ga and V in power series of the velocity components and retaining up to third
order terms, the following expressions for the non-dimensional forces are obtained:

fi = fi0 + fi1u̇1 + fi2u̇2 + fi3u̇2
1 + fi4u̇2

2 + fi5u̇1u̇2 + fi6u̇3
2 , i=1, 2. (5)

In equation (5) coefficients fij ( j=1, . . , 6) depend on the drag and lift coefficients together
with their derivatives; in addition, some of them also depend on the dimensionless uniform
wind velocity,

m=(rbU/m)zL/g, (6)

which m is assumed to be the control parameter. The binormal force f10 and the normal
force f20 are driven exclusively by the mean wind speed; they will be referred to as steady
state forces.

By neglecting the effects due to cable flexibility, the forces (5) acting on the rigid cylinder
are directly applied to the cable in the normal (lift force, f2) and binormal (drag force, f1)
direction; consequently, no forces are considered in the tangential direction ( f3 =0).

3. DISCRETE MODEL

A discrete two-d.o.f. model is obtained from equations (1). The two components of
motion are assumed as:

ui (s; t)= qi (t)fi (s), i=1, 2, (7)

where qi (t) describe the temporal behaviour and fi (s) are the out-of-plane (i=1) and
in-plane (i=2) modes, respectively, taken from the linear theory [9]. By applying the
Galerkin method, two ordinary differential equations are obtained:

q̈1 + b1q̇1 + b2q̇2 +v2
1q1 + c1q1q2 + c2q3

1 + c3q1q2
2 + b5q̇2

1 + b6q̇2
2 + b7q̇1q̇2 + b8q̇3

2 = f10,

q̈2 + b3q̇1 + b4q̇2 +v2
2q2 + c4q2

1 + c5q2
2 + c6q2

1q2 + c7q3
2 + b9q̇2

1 + b10q̇2
2 + b11q̇1q̇2

+ b12q̇3
2 = f20. (8)

In equations (8) v1 and v2 are non-dimensional natural frequencies; due to the
dimensionless time in equations (3), they are equal to the ratios between the dimensional
frequencies of the two modes considered and the lower out-of-plane frequency of the linear
cable. Both quadratic and cubic non-linearities appear in the equations of motion. The
coefficients of equations (8) are defined in Appendix A; details can be found in reference
[12].

Equations (8) admit non-trivial static solutions qi = q̄i (i=1, 2) which satisfy the
following non-linear algebraic equations:

v2
1 q̄1 + c1q̄1q̄2 + c2q̄3

1 + c3q̄1q̄2
2 = f10,

v2
2 q̄2 + c4q̄2

1 + c5q̄2
2 + c6q̄2

1 q̄2 + c7q̄3
2 = f20. (9)

Since the b and c coefficients depend on m, equations (9) implicitly define the equilibrium
paths q̄i = q̄i (m). Attention will be focused on the (natural) equilibrium path for which
displacements q̄i vanish when m=0; i.e., q̄i (0)=0.

In order to separate the effects of the static forces, the displacements qi (t) are expressed
as

qi (t; m)= q̄i (m)+ ni (t; m), i=1, 2, (10)
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where ni are the dynamic (sliding) displacements measured from the static m-dependent
configuration.

By substituting equations (10) into the equations of motion (8) and accounting for the
static equilibrium equations (9), the following non-linear differential equations in the
sliding displacements are found:

n̈1 + k1n1 + k2n2 + b1ṅ1 + b2ṅ2 + c*1 n1n2 + c2n
3
1 + c3n1n

2
2 + h1n

2
1 + h2n

2
2

+b5ṅ
2
1 + b6ṅ

2
2 + b7ṅ1ṅ2 +b8ṅ

3
2 =0,

n̈2 + k3n1 + k4n2 + b3ṅ1 + b4ṅ2 + c*4 n2
1 + c*5 n2

2 + c6n
2
1n2 + c7n

3
2 + h3n1n2

+b9ṅ
2
1 + b10ṅ

2
2 + b11ṅ1ṅ2 + b12ṅ

3
2 =0. (11)

Here

k1 =v2
1 + c1q̄2 +3c2q̄2

1 + c3q̄2
2 , k2 = c1q̄1 +2c3q̄1q̄2, k3 =2c4q̄1 +2c6q̄1q̄2,

k4 =v2
2 +2c5q̄2 + c6q̄2

1 +3c7q̄2
2 , c*1 = c1 +2c3q̄2, c*4 = c4 + c6q̄2,

c*5 = c5 +3c7q̄2, h1 =3c2q̄1, h2 = c3q̄1, h3 =2c6q̄1. (12)

It emerges that the static forces fi0 modify the equilibrium configuration of the cable and,
consequently, its elastic properties. In particular, the tangent stiffness matrix is no longer
diagonal; therefore small-amplitude in-plane and out-of-plane oscillations are coupled and
the linear frequencies depend on m. In addition, nonlinear c* coefficients are altered by
the static forces and some new h-terms appear in the equations of motion.

4. AMPLITUDE EQUATIONS

The multiple-scales perturbation method is employed to obtain equations in amplitudes
and phases. As a first step, a dimensionless small parameter o is introduced. It is assumed
that the amplitude of motion and the damping are small and of the same order o:

ni = on̂i , bj = ob
 j , i=1, 2; j=1, . . . , 4. (13)

In addition, two different hypotheses are made about the order of magnitude of the static
displacements:

(a) q̄i =O(ni ), (b) q̄i qO(ni ). (14)

In case (a) it is assumed that, due to the static forces, the cable configuration undergoes
small deviations from the rest position, of the same order of the dynamic displacements,
so that linear coupling (k2- and k3-terms) is weak. In case (b) it is assumed that the static
displacements are larger than the dynamic components, so that linear coupling is strong.
Case (a) is obviously much easier to deal with; however, it is expected that one has to resort
to case (b) to describe accurately the motion when m is moderately large.

The quadratic terms in equations (11) enhance strong modal coupling when the
frequency of the in-plane motion is about twice that of out-of-plane motion, i.e.,

v2 =2v1 + os, s=O(1), (15)

s being a detuning parameter. In this case, an internal resonance condition of type 1:2
occurs. This condition is verified around the first ‘‘cross-over’’ point of the cable [9], for
which v1 =1 and v2 =2. Two slow time scales, t1 and t2, are introduced in addition to
the fast scale t0:

tn = ont, n=0, 1, 2. (16)
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The two cases of equations (14) are separately dealt with in the sequel.

4.1.   

By letting q̄i = oq� i , using equations (13) and omitting the hat, the equations of motion
(11) can be expressed as

n̈1 +v2
1n1 + o(k'1n1 + k'2n2 + b1ṅ1 + b2ṅ2 + c1n1n2 + b5ṅ

2
1 + b6ṅ

2
2 + b7ṅ1ṅ2)

+o2(k01 n1 + k02 n2 + c'1n1n2 + h1n
2
1 + h2n

2
2 + c2n

3
1 + c3n1n

2
2 + b8ṅ

3
2 )=0,

n̈2 +v2
2n2 + o(k'3n1 + k'4n2 + b3ṅ1 + b4ṅ2 + c4n

2
1 + c5n

2
2 + b9ṅ

2
1 + b10ṅ

2
2 + b11ṅ1ṅ2)

+o2(k03 n1 + k04 n2 + c'4n2
1 + c'5n2

2 + h3n1n2 + c6n
2
1n2 + c7n

3
2 + b12ṅ

3
2 )=0, (17)

where k'i , c'j and k0i denote linear and quadratic parts in q̄k of coefficients (12), respectively.
Displacements nk are expanded in o-series and use is made of the time scales (16):

nk (t; o)= nk0(t0, t1, t2)+ onk1(t0, t1, t2)+ o2nk2(t0. t1, t2)+ · · ·, k=1, 2. (18)

Equating coefficients of the same powers of o, one obtains the perturbative equations
[12], not shown here for the sake of brevity. At order one, the generating solution is:

nk0(t0, t1, t2)=Ak (t1, t2) eivkt0 +A� k (t1, t2) e−ivkt0, k=1, 2, (19)

where Ak are complex functions of the slow scales and the overbar denotes the complex
conjugates. Elimination of the secular terms at the higher levels of approximation (o and
o2 orders) leads to conditions of the type

d1A1 =J11(A1, A� 1A2; m), d2A1 =J21(A1, A� 1A2, A1A2A� 2, A2
1A� 1; m),

d1A2 =J12(A2, A2
1 ; m), d2A2 =J22(A2, A2

1 , A1A� 1A2, A2
2A� 2; m), (20)

where dn = 1/1tn . Equations (20) govern the amplitude modulation on the slow scales t1

and t2. It is possible to go back to the true time t by combining them, noting that
d/dt=d0 + o d1 + o2 d2 and the Aks are independent of t0. Upon re-absorbing parameter
o, the following amplitude equations are obtained,

A� 1 =J1(A1, A� 1A2, A1A2A� 2, A2
1A� 1; m), A� 2 =J2(A2, A2

1 , A1A� 1A2, A2
2A� 2; m), (21)

where Jk =J1k +J2k . By introducing the polar form

Ak = 1
2ak eiqk, k=1, 2, (22)

where ak and qk are the amplitude and phase of Ak , respectively, and separating equations
(21) into real and imaginary parts, four state equations in the real variables ak and qk are
obtained. These equations can be transformed into an autonomous system by letting

g= q2 −2q1 + st, (23)

The result is the set of three equations

ȧ1 = a1[p1 + p2a2 sin g+ p3a2 cos g],

ȧ2 = p4a2 + p5a3
2 + p6a2

1 sin g+ p7a2
1 cos g,

a1a2ġ= a1[p8a2 + p9a3
2 + p10a2

1a2 − p7a2
1 sin g+ p6a2

1 cos g−2p3a2
2 sin g+2p2a2

2 cos g],

(24)

where the coefficients pi are generally functions of the non-dimensional mean wind speed
m; their expressions are given in Appendix B.
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Equations (24) are formally identical to those obtained in reference [7], where a slightly
different procedure was followed, based on a perturbative approximation of the static
equilibrium path. They represent a non-linear dynamic system of state variables (a1, a2, g)
asymptotically equivalent to the original system (11).

4.2.   

By using the ordering (13) in the equations of motion (11) and assuming q̄i =O(1),
non-linear equations still coupled in the linear part are obtained. To make their treatment
simpler, it is convenient to perform a linear transformation to uncouple the linear part.
By setting {v}=[U]{j}, where

[U]=$1
a1

a2

1% (25)

is the 2×2 modal matrix and {j} the vector of the principal co-ordinates, substituting
in equations (11) and pre-multiplying them by [U]−1, the following equations are obtained:

j� 1 + ṽ2
1j1 + o(r1j� 1 + r2j� 2 + s1j

2
1 + s2j1j2 + s3j

2
2 + r5j� 21 + r6j� 1j� 2 + r7j� 22 )

+o2(s4j
3
1 + s5j

2
1j2 + s6j1j

2
2 + s7j

3
2 + r8j� 31 + r9j� 21j� 2 + r10j� 1j� 22 + r11j� 32 )=0,

j� 2 + ṽ2
2j2 + o(r3j� 1 + r4j� 2 + s8j

2
1 + s9j1j2 + s10j

2
2 + r12j� 21 + r13j� 1j� 2 + r14j� 22 )

+o2(s11j
3
1 + s12j

2
1j2 + s13j1j

2
2 + s14j

3
2 + r15j� 31 + r16j� 21j� 2 + r17j� 1j� 22 + r18j� 32 )=0. (26)

Here the frequencies ṽ and the coefficients r and s are listed in Appendix C. By performing
the same steps as in the previous section, equations of type (21) are obtained, though with
different coefficients. In particular, some coefficients which are purely imaginary in
equations (21) are instead complex in the present case. Therefore, some extra terms appear
with respect to equations (24) when the polar form of the complex amplitudes is
introduced. The resulting amplitude and phase modulation equations are

ȧ1 = a1[p1 + p2a2 sin g+ p3a2 cos g+ p11a2
1 + p12a2

2 ],

ȧ2 = p4a2 + p5a3
2 + p6a2

1 sin g+ p7a2
1 cos g+ p13a2

1a2,

a1a2ġ= a1[p8a2 + p9a3
2 + p10a2

1a2 − p7a2
1 sin g+ p6a2

1 cos g−2p3a2
2 sin g+2p2a2

2 cos g].

(27)

Coefficients p1–p10 are re-defined in Appendix C, together with the new p11–p13 coefficients.
It should be remembered, however, that a1, a2 and g now represent the amplitudes and
the phase difference of the principal coordinates ji .

5. AMPLITUDE EQUATIONS ANALYSIS

5.1.   

The fixed points (a1, a2, g) of the dynamical systems (24) and (27) correspond to steady
state solutions of the original system (11).
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The case of small static displacements is considered first. By truncating the expansion
(18) at the o-order, steady state solutions of equations (24) are found to be

v1(t)= a1 cos V1t−L1a2 sin (V2t+ g)+L2a2 cos (V2t+ g)+ 1
2L3a2

1 cos 2V1t

+ 1
2L4a2

2 cos (2V2t+2g)+ 1
2L5a1a2 cos [(V1 +V2)t+ g]+ 1

2L6a2
1 + 1

2L7a2
2 ,

v2(t)= a2 cos (V2t+ g)−L8a1 sin V1t+L9a1 cos V1t+ 1
2L10a2

2 cos (2V2t+2g)

+ 1
2L11a1a2 cos [(V2 −V1)t+ g]+ 1

2L12a1a2 cos [(V1 +V2)t+ g]

+ 1
2L13a2

1 + 1
2L14a2

2 . (28)

Here an arbitrary initial phase has been set equal to zero. In equations (28)

V1 =V2/2, V2 =v2 + p'8 − p7(a2
1 /a2) sin g+ p6(a2

1 /a2) cos g+ p'10a2
1 + p'9a2

2 . (29)

are the amplitude-dependent frequencies of the periodic motion (non-linear frequencies).
Coefficients pi and Li are given in Appendix B. In equation (29b) p'8 represents the
correction of the linear undamped frequency v2 due to the damping terms b1, . . b4.
Equations (29) contain, as a particular case (no aerodynamic terms or damping), the
quadratic approximation of the non-linear frequency V2 of undamped free planar motions
given in reference [4]. It should be noted that, at the leading order, the in-plane
v2-component oscillates at a frequency double that of the out-of-plane v1-component, with
a phase-difference g.

When large static displacements are considered, equations (28) and (29) still hold, with
the out-of-plane and in-plane displacements v1(t) and v2(t) replaced by the principal
co-ordinates j1(t) and j2(t), respectively, the natural frequencies vi substituted by the
modified frequencies ṽi , and with the coefficients pi and Li defined in Appendix C. Since
v1(t)= j1(t)+ a2j2(t) and v2(t)= a1j1(t)+ j2(t) according to equation (25), each
component vi (t) oscillates at the leading order with two frequencies in 1:2 ratio.

5.2.    

From the analysis of equations (24) and (27) the existence of the following branches of
fixed points is proved (see Figures 3(a, b)): branch I, a1 = a2 =0, g arbitrary, [m; branch
II, a1 =0, a2 = a2(m)=z−p4(m)/p5(m), g arbitrary; branches III and IV, a1 = a1(m),
a2 = a2(m), g= g(m).

First, the bifurcation of branch I is studied. When a1:0, a2:0, m:mc, equations (24)
and (27) reduce to

a1pc
1 =0, a2pc

4 =0, a1a2pc
8 =0, (30)

where pc
i = pi (mc ). Two different solutions of equations (30) exist: a2-bifurcation, a1 =0,

a2 $ 0 when pc
4 =0; a1-bifurcation, a1 $ 0, a2 =0 when pc

1 =0. In the first case branch II
bifurcates in the a2-direction (see Figures 3(a, b)) while, in the second case, branch IV
bifurcates in the a1-direction (see Figure 3(b)). In both cases galloping is monomodal, since
only one mode is triggered at the bifurcation. However, in the postcritical range, while the
motion remains monomodal along branch II, it becomes bimodal along branch IV.

The bifurcations of branch I and the pattern of branch II strongly depend on the
magnitude of the static displacements. In fact, if static displacements are assumed small,
p1 Q 0 for any m, since the drag coefficient cd is positive for any cross-section shape;
therefore only in-plane a2-bifurcations can occur. In addition, since p4(m) is a monotonic
function of m and p5(m)Q 0, branch II intersects branch I only at the B1-point. Therefore,
branch II is an open curve, similar to a typical one-d.o.f. vertical galloping diagram (see
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Figure 3. Steady state amplitude solutions vs. nondimensional wind velocity; (a) small and (b) large static
displacement solutions; (——) stable, (––––) unstable.

Figure 3(a)), though in the problem analyzed here, the motion is not purely planar, as can
be seen from equations (28). On the contrary, if static displacements are assumed large,
both kinds of bifurcation take place. In addition, p4(m) is a non-monotonic function of
m, with p5(m) still negative; therefore branch II intersects branch I at B1- and B4-points and
disappears for higher m’s: i.e., it is a closed curve (see Figure 3(b)). Since p4(m) represents
the real part of an eigenvalue of the linearized system, it follows that branch II exists only
for values of m for which branch I is unstable.

The conclusion is that the small static displacement approximation is quite inadequate
to correctly depict the qualitative scenario, if sufficiently large values of m have to be
considered. However, if the critical wind velocity is sufficiently low, it allows an accurate
description of the first bifurcation and the initial postcritical behaviour. In particular, it
furnishes a critical value mc which differs from the one drawn by the well-known Den
Hartog criterion [1], since it accounts for the effects of the mean wind force in binormal
direction f10.

Next the bifurcation of branch II is analyzed. To this end one looks for the existence
of two-component solutions (a1 $ 0, a2 $ 0) close to the branch (a1, a2)= (0, a2(m)). By
resolving the limit of equations (27) for a1:0, g:g0, m:m0, a2:a20, with a20 = a2(m0), and
by letting p0

i = pi (m0), the following equations are obtained:

p0
1 + p0

2a20 sin g0 + p0
3a20 cos g0 + p0

12a2
20 =0,

p0
8a20 + p0

9a3
20 −2p0

3a2
20 sin g0 +2p0

2a2
20 cos g0 =0 (31)

since the second of equations (27) gives an identity to the leading order. Equations (31)
are a non-linear algebraic system with two unknowns, g0 and m0. Each solution of
this system determines a bifurcation point on the branch II, from which a branch III
originates (B2- and B3-points in Figure 3(a, b)). It will be shown in the sequel that by
using numerical solutions, branch III is a closed path, both in the small and large
static displacements regime. Bimodal galloping occurs along the path as a consequence of
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the non-linear interaction between the two internally resonant modes, mainly governed by
quadratic mechanical terms.

The stability of branch II cannot be studied by standard methods if the polar form (24)
or (27) of the amplitude equations is considered, but use has to be made of the Cartesian
form (see, e.g. reference [5]). However, stability has been checked here numerically by
analyzing the variational equations of the equations of motion (11), based on the periodic
solution (28), via the Floquet theory. It has been found that branch II is unstable between
the bifurcation points B2 and B3, and stable elsewhere. A very good agreement about the
position of the bifurcation points in the two different approaches has been found. Finally,
the stability of branch III has been analyzed via standard eigenvalue analysis. It has been
found that it sometimes undergoes Hopf bifurcations, as illustrated below.

6. NUMERICAL RESULTS AND DISCUSSION

Some different aspects of the problem have been investigated in order to describe the
mechanical behaviour of the cable. First, the aerodynamic cable properties are discussed
in section 6.1; then, small oscillations around the static configuration are analyzed in
section 6.2. A comparison between the previously developed perturbation solutions and
a numerical integration of the equations of motion is presented in section 6.3. The influence
of the cable’s parameters on postcritical equilibrium patterns is analyzed in section 6.4.
Simplified models, in which only the most important aerodynamic terms are retained, are
discussed in section 6.5. Transient and steady state motions are analyzed in section 6.6.
All the results are obtained for a section stressed by a symmetric mean wind; the effects
of non-symmetric wind pressures are studied in section 6.7.

6.1.  

Two cases have been considered with respect to wind flow: symmetric cross-sections
stressed by the mean wind speed along the symmetry axis, and symmetric or
non-symmetric cross-sections stressed in a generic direction. The first particular case
involves simplifications both in the equations of motion and in the amplitude equations;
the latter generic case is described by the full form of the equations.

In the case of symmetric flow, the cross-section characteristic and the aerodynamic
properties are deduced from reference [3] for a U-shaped conductor, by assuming the
section to be symmetrical with its maximum ice eccentricity facing the wind. The cable has
a diameter of 2·81 cm, a mass of 1·80 kg/m (ice included), damping coefficients equal to
0·44% and axial rigidity of 29·7×106 N. In the case of non-symmetric flow, the
aerodynamic properties are deduced from reference [17], by taking a U-shaped section
again now stressed by a rotated flow of about 44° with respect to the symmetry axis. The
section has the same characteristics as the symmetric case but greater ice thickness (wet
snow with a maximum thickness of 12·6 mm), for which different aerodynamic coefficients
have been determined. In this latter case the mass is assumed to be 2.00 kg/m, ice included.
For both cases the first in-plane and out-of-plane symmetric modes are considered.

In the case of flow to a symmetry axis, which is quite a widespread assumption in the
classical examples of literature [18], one obtains considerable simplifications. Since the drag
coefficient cd (ga ) is a symmetric function and the lift coefficient cl (ga ) a skew-symmetric
function of the fluctuating angle of attack ga , the along-wind cF1 and transversal cF2 force
coefficients are, respectively, symmetric and skew-symmetric as regards ga . For this reason,
the aerodynamic forces fi have simplified expressions and, in the equations of motion (8),
some coefficients vanish. In particular, there is a decoupling among the linear terms
(b2 = b3 =0) (i.e., proportional damping) and a lack of some non-linear terms
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Figure 4. Static displacements of the mid-point of the cable; (a) displacements vs. wind velocity; (b) equilibrium
path in the configuration plane.

(b7 = b8 = b9 = b10 =0), whereas some coefficients pi have simplified expressions. In
particular, in the small static displacement case, p1 =−b1/2 and p4 =−b4/2 hold;
therefore, the first bifurcation value mc satisfies the classical Den Hartog criterion,
b4(mc)=0.

6.2.       

As a sample case, a cable with dimensionless mechanical parameters a=1165, b=0·185
is considered [11], hereafter called the basic example. According to Irvine’s parameter [9]
l2 = ab2 =39·872133 4p2, the cable is close to the first cross-over point
(v1 =1, v2 =2·00663). The steady state solution is determined as a function of the wind
mean speed m by numerically solving the system of non-linear equations (9) through
Newton–Raphson techniques. The equilibrium points are subsequently approximated by
using least squares in such a way as to obtain an analytical polynomial expression for the
non-trivial equilibrium path q̄i = q̄i (m). In Figure 4(a) the numerical solution and the
polynomial regression (limited to sixth order) are compared; it appears that they are in
excellent agreement. This numerical procedure has been preferred to a perturbative
extrapolation of the static equilibrium path from the origin in order not to introduce
further errors into the description of the cable non-linear dynamic response. In Figure 4(b)
the static displacements of the mid-point of the cable are plotted for increasing wind
velocities; straight lines represent the deformed sag of the cable. It is seen that, for high
wind mean speed (m=4 corresponds to about 40 m/s) the influence of steady state forces
is remarkable; in particular the out-of-plane displacements are comparable to the initial
in-plane sag.

Small oscillations around the steady-state configuration are then considered. Figure 5(a)
shows the eigenvalues imaginary part of the linearized equation (11) versus m, obtained
by solving numerically the characteristic equation. They are compared with order 1 and
o2-order perturbative solutions, obtained in the two hypotheses of small (SSDS,
dash-dotted lines) and large (LSDS, continuous lines) static displacements. The linear
frequencies are strongly modified by the steady state forces when the mean wind speed is
sufficiently high. Such behaviour is described by the SSDS only at the o2-order, since, in
which the spectral properties of the generating system are not affected by steady
state forces. On the contrary, the LSDS is very close to the numerical solution even at



3

1

2

0
10 2 3 4 5

Im
( 

 i)

(a)

2

1

| |

0.1

–0.2

–0.1

0.0

–0.3

–0.4
10 2 3 4 5

R
e(

  
i)

(b)
2

1

B1

B4

B5

3

–1

0

1

2

–2

–3
10 2 3 4 5

i

(c)

1

2

.   . 926

order 1. As a consequence of the frequency modification, the detuning s rapidly increases
and moves away from resonant conditions; therefore, the perturbative solution, which has
been obtained for a one-to-two frequency ratio, loses precision for high wind speed.

Similar behaviour is found for the eigenvalues real part (see Figure 5(b)). The excellent
approximation furnished by the LSDS allows one to describe correctly the B1- and
B4-bifurcations (p4 0Re l2 =0) and the B5-bifurcation (p1 0Re l1 =0) of branch I (see
Figure 3(b)). In the basic example, the first bifurcation is also well approximated by the
SSDS, corresponding to the Den Hartog criterion. However, particular cases could be
encountered in which the stabilizing effect of the steady state forces on branch I influences
the first bifurcation value and, in some borderline cases (i.e., large mechanical
non-linearities or cross-sections not very sensitive to galloping), even disrupts this
bifurcation.

Finally, Figure 5(c) shows the components a1, a2 of the eigenvectors (25). Their
increasing values are a measure of the growing coupling between the in-plane and
out-of-plane motions.

6.3.     

With reference to the basic example, a quantitative comparison between the two
perturbative solutions developed above is performed. In Figure 6 SSDS (thin lines) and

Figure 5. Eigensolutions of the linearized equations: (a) imaginary and (b) real part of the eigenvalues; (c)
eigenvector components; thin lines: order 1 solution, thick lines: o2-order solution, + numerical solution.
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Figure 6. Comparison among SSDS (thin lines), LSDS (thick lines) and numerical solutions (e a1, r a2): (a)
postcritical branches; (b) non-linear frequencies.

LSDS (thick lines) are compared, both with regard to postcritical branches (Figure 6(a))
and non-linear frequencies (see Figure 6(b)). The postcritical branches in Figure 6(a) agree
with the qualitative patterns of Figures 3(a, b). The monomodal branch II is an open curve
in the SSDS and a closed curve in the LSDS. Branch III bifurcates from branch II in both
solutions. Branch IV bifurcates from the trivial branch I only in the LSDS. Curves in
Figure 6(b) represent the non-linear frequency V2 versus the in-plane amplitude a2

(equation (29b)). The frequency curve II originates from the linear damped frequency,
close to v2 =2. In the LSDS, V2 decreases until a2 reaches a maximum (softening
behaviour), then it increases until a2 vanishes (hardening behaviour). In the SSDS, V2

always decreases. In both solutions, similarly to the amplitude curves, branch III bifurcates
from branch II.

Figure 7. Numerical solutions for m=1·4: (a) steady state motions; (b) and (c) frequency spectra.
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Perturbative solutions are compared with numerical results (diamond points), obtained
through direct integration of the Lagrangian equations (8). After specifying initial
conditions, the integration is carried out until the system reaches a steady state (see
Figure 7(a)), determined by checking the constancy of the peak-to-peak amplitudes over
several consecutive periods. Steady state typically occurs at about t=2000. In order to
identify the harmonic components of the steady motion, a fast Fourier transform (FFT)
was performed over a sufficiently long interval of time with a zero mean signal (i.e., filtering
the static component). The modal amplitudes a1 and a2 are approximately identified as the
amplitude corresponding to the leading frequencies in 1:2 ratio (see Figures 7(b, c)).

With regard to postcritical branches (see Figure 6(a)), it is noted that the LSDS is very
close to the numerical solution and accurately describes the non-linear behaviour even at
high wind speeds, though the errors grow due to the progressive detaching from resonant
conditions. On non-linear frequencies (see Figure 6(b), for m$(0, 2·5)) the errors of the
LSDS appear to be larger. However, they are due to numerical problems related to the
frequency discretization in FFT (in Figures 6 and 7 Dv=0·00767 has been used). This
circumstance highlights the benefit of the analytical solution as compared with the
numerical solution.

In conclusion, the SSDS is able to fit the numerical solution only for low values of the
non-dimensional wind speed m while, for sufficiently high m, it fails to describe even the
qualitative behaviour of the real branches. Therefore, reference is made in the sequel to
LSDS. Previous results emphasize the importance of the steady state forcing terms. They
are usually neglected in the literature, because they are considered as not influencing the
bifurcation. In the problem dealt with here, however, they play an important role in the
description of both the bifurcation and the postcritical behaviour.

6.4.    

In order to study the influence of cable parameters on the equilibrium paths’ shapes,
three different iced suspended cables are considered with the same cross-section (i.e., same
aerodynamic properties), different values of the dimensionless parameter b

(0·20, 0·185, 0·15) but the same values of the Irvine’s parameter l2 = ab2 3 4p2. Therefore,
the cables have the same detuning and dimensionless frequencies but different length and
critical values of galloping. All the equilibrium branches and the non-linear frequencies
of the three cables are drawn in Figure 8. From top to bottom b decreases and a increases;
therefore, since quadratic terms are proportional to ab and cubic terms to a (see Appendix
A), all the geometric non-linearities increase. This circumstance has two effects. First, due
to the major influence of the static displacements, the B4-bifurcation occurs at lower
m-values (see Figure 5); consequently branches II and III exist in a smaller interval of m

and the static equilibrium configuration (branch I) regains stability in advance. Second,
due to the major influence of the quadratic non-linearities, which are the most importantly
responsible for the occurrence of coupled galloping, branch III exists in a wider range, if
compared with the branch II domain. In summary, when geometrical non-linearities
increase, the B2- and B3-bifurcation points tend to the B1- and B4-points, respectively.

The analysis performed above has permitted the highlighting of the occurrence on
branch III of a new bifurcation phenomenon. When b=0·15 (see Figure 8(c)), at the B6-
and B7-points, a couple of eigenvalues of the variational matrix cross the imaginary axis;
thus, a Hopf bifurcation occurs and a region of amplitude modulate motions arises
between B6 and B7. An example is shown in Figure 9, obtained by numerically integrating
the amplitude modulation equations (27) (m=1·0 and initial conditions a1 = a2 =10−3).
There, the time-histories of the modal amplitudes (see Figure 9(a)) and the trajectory on
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Figure 8. Non-linear equilibrium paths and in-plane frequencies for three different cables with constant parameter
l2; (a) a=996·8031, b=0·20; (b) a=1165, b=0·185; (c) a=1772·0944, b=0·15; (——) stable, (––––)
unstable.

the phase-plane (see Figure 9(b)) are plotted. The unstable equilibrium solution
(diamond-point) is also drawn in Figure 9(b). It is seen that, after the transient has been
exhausted, a limit-cycle is reached, along which the cable experiences a periodically
amplitude-modulated motion. In the steady state regime, strong energy exchanges occur
between in-plane and out-of-plane components, with a typical pulse behaviour. These
results have also been confirmed by numerical integrations of the Lagrangian motion
equations (8).

The robustness of previous results when the detuning s is varied is now investigated.
In Figure 10 results relative to two different cables are illustrated. The cables have the same
cross-section and geometric characteristics (in such a way non-dimensional amplitudes and
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Figure 9. Amplitude modulate motions for m=1·0: (a) amplitude time-histories; (b) trajectory on the phase-plane
(R unstable equilibrium position; —————— limit cycle).

wind velocity are comparable), but different sags, for which s=−0·10 (a=990,
b=0·185, thin lines) or s=0·19 (a=1272·83, b=0·2021, thick lines). It is apparent that
the bimodal galloping still holds in a frequency range around the first cross-over point,
particularly wide for positive detuning, for which mechanical quadratic terms are larger.

6.5.  

It is worth discussing previous results through simplified models, drawn from the
complete equations by neglecting some non-linear terms. The discussion will make it
possible to understand the importance of several non-linear forces on both qualitative and
quantitative system mechanical behaviour. The amplitude equation coefficients pi depend
both on mechanical (coefficients ci ) and aerodynamic (coefficients bi ) non-linearities.
However, from the numerical values they assume in the examples illustrated above, it

Figure 10. Detuning effects (s=−0·10, thin lines; s=−0·19, thick lines): (a) postcritical branches; (b)
non-linear frequencies.
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Figure 11. (a) Modal amplitudes and (b) in-plane non-linear frequencies vs. a2; complete model: LSDS
(continuous thick lines) and SSDS (dashed thin lines); LSDS simplified models: all aerodynamic non-linearities
neglected, except for b12, accounting for (dashed thick lines) or neglecting (continuous thin lines) steady state
forcing terms.

appears that coefficients pi are weakly affected by non-linear aerodynamic terms, that
slightly modify the mechanical ones, with the exception of the coefficients p5, p11, p12, p13,
which depend only on the cubic aerodynamic non-linear terms b8 and b12. The latter,
through the p5 coefficient, plays a fundamental role in the description of branches II while
b8 is nil for symmetry. Neglecting all non-linear aerodynamic terms except b12, one obtains
the approximate (dashed thick lines) equilibrium paths shown in Figure 11(a). All the
qualitative properties of the complete model are preserved; in fact, branch II is exactly
reproduced and branch III is very well approximated.

Among the geometric non-linearities, the most important from a qualitative point of
view appear to be the quadratic ones, responsible for the internal resonance phenomenon,
as highlighted in many works on this subject (see, e.g., reference [5]). Therefore, the
bifurcation point B2 essentially depends on the quadratic geometric non-linear terms, in
particular on resonant ones c1 and c4. If all non-linear geometric terms are neglected and
only aerodynamic coefficients are retained, the small and large static displacement
solutions coincide. Moreover a drastic simplification occurs, since several amplitude-
equation coefficients vanish (p2 = p3 = p6 = p7 = p11 = p12 = p13 =0). Then the study of the
fixed points of equation (271) reduces to p1a1 =0; since p1 $ 0 [m, a1 is nil. Therefore
two-component steady state motions (bimodal galloping) are lost if geometric
non-linearities are not taken into account. Moreover, branch II is always an open stable
curve and coincides with the classical one-d.o.f. galloping branch (see, e.g., reference [18]).
These facts point out the importance of geometric non-linear terms in the qualitative
description of branches.

If constant forces are omitted and only linear and non-linear b12 terms retained, the
branches plotted with continuous thin lines in Figure 11(a) are obtained. They are similar
to the SSDS of Figure 6, here reported with dashed thin lines. It is seen that branch II
does not close; moreover it regains stability only at very high wind velocity values.

The importance of steady state forcing terms clearly emerges also in the analysis of the
in-plane non-linear frequency V2 on branch II, still referred to the basic case (see Figure
11(b)). With respect to the classical one-d.o.f. galloping theory where the frequency is
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amplitude-independent (see, e.g., reference [18]), a frequency correction occurs here owing
to geometrical and aerodynamic effects. The aerodynamic effects are mainly due to the
cubic term b12 that, although it does not enter directly in equations (29), governs the steady
state amplitude a2 and, consequently, the non-linear frequency. The simplified model
accounting for steady state forces leads to numerical results practically coincident with the
complete model, preserving all its properties. On the contrary, when steady-state forces
are neglected, the strong change of non-linear frequency curvature and the successive
B4-bifurcation are lost.

6.6.     

Transient motions are analyzed through direct numerical integration of the amplitude
equations (27). Reference is made to the basic example by assuming a non-dimensional
wind speed m in the range of existence of (stable) bimodal galloping (m=1·6). By
perturbing the trivial equilibrium position, the motion illustrated in the (a1, a2) phase-plane
(see Figure 12(a)) and the associated amplitude time-histories (see Figure 12(b)) arise. It
is seen that the trajectory is first rapidly attracted by the unstable branch II (represented
by the higher ordinate point in Figure 12(a)); then the motion evolves towards the stable
branch III where a steady state two-component oscillation takes place. During the
transient, amplitudes larger than the regime amplitudes are reached.

The trajectories described by the cable mid-point (s=1/2) are then analyzed. By using
equations (10) and (28) (with vi replaced by ji ), the first-order approximation (qi = qi0, thin
line) and the second-order approximation (qi = qi0 + qi1, thick line) to the periodic motion
are illustrated in Figure 13(a). The non-trivial static equilibrium configuration is also
represented by a cross-point in the figure. By comparing the two approximations, it
appears that higher order terms slightly modify the trajectories while preserving their
qualitative behaviour. Moreover, due to the presence of steady state forces, the
out-of-plane displacements are always positive; therefore the cable never crosses the
reference vertical configuration. In Figure 13(b) the second order approximation and the
numerical results (diamond points) obtained through the direct integration of the

Figure 12. (a) Trajectories in the phase-plane and (b) amplitude time-histories for m=1·6.
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Figure 13. Motions of the cable at the mid-span for m=1·6; (a), (b) steady state motion (—— qi0, —————— qi0 + qi1,
×× static solution, e numerical solution); (c) transient motion.

Lagrangian equations (8) are compared. Excellent agreement is found since small errors
occur only around the motion inversion points.

Transient motions of the cable at the mid-span are represented in Figure 13(c) by using
equations (28) with (a1, a2, g) taken from the previous analysis (see Figure 12). The
trajectory is initially close to an ellipse representing the unstable steady state motion on
branch II; then it tends to the closed trajectory of Figure 13(b).

6.7. -  

The effects of a non-symmetric flow are now analyzed. The previous sample cable is
considered again, but its aerodynamic properties are modified according to section 6.1.
First, the B1-bifurcation on branch I is studied. The real part of the eigenvalues of the
Jacobian matrix at the equilibrium position are plotted in Figure 14(a) versus the wind
velocity. Both numerical (cross-points) and perturbative (LSDS continuous thick line,
SSDS dashed thin line) results are shown. In addition the b4(m) linear function is also
plotted, according to the Den Hartog criterion. It is seen that LSDS and numerical
solutions are in excellent agreement, while SSDS diverges. However, the latter furnishes
a very good approximation to the critical wind velocity value. On the contrary, if the Den
Hartog criterion b4(m)=0 is applied, i.e., if the coupling between the in-plane and
out-of-plane displacements is ignored, an incorrect critical velocity, about 40% greater
than the true value, is found. Therefore, different from the symmetric case, this simplistic
criterion gives a dangerous non-protective estimate of the first bifurcation point. This
circumstance can be explained by referring to the structure of the linear damping matrix
in the modal basis. It is generally a full matrix (i.e., the damping is of non-proportional
type), due to coupling effects produced both by static and aerodynamic interaction forces.
However, the former are small at low wind velocity while the latter exist only in
non-symmetric systems. Therefore, in the symmetric case the coupling is weak and the Den
Hartog criterion is still quite accurate, while in the non-symmetric case the coupling is
strong and the criterion is no longer valid.
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Figure 14. (a) Critical eigenvalue and (b) modal amplitudes for the basic example in non-symmetric flow;
complete model: LSDS (continuous thick lines) and SSDS (dashed thin lines); LSDS simplified models: all
aerodynamic non-linearities neglected, except for b8 and b12, accounting for (dashed thick lines) or neglecting
(continuous thin lines) steady state forcing terms; + numerical solution.

Next the postcritical equilibrium branches are analyzed. In Figure 14(b) a comparison
between the complete model (LSDS, continuous thick curves) and the simplified model
(dashed thick curves), obtained by neglecting all the aerodynamic non-linearities except
the cubic terms b8 and b12, is performed. It confirms previous conclusions about the really
important forces (see section 6.5). The SSDS (dashed thin lines) is close to the previous
solutions for sufficiently low m; in particular, an excellent approximation of the first
bifurcation point and a good estimation of the second bifurcation point is found. However,
if Figure 14(b) is compared with Figure 11(a), relative to the symmetric case, a not so good
approximation emerges in the non-symmetric case. This occurrence is probably due to the
major importance of the static forces, which in the non-symmetric problem act in both
planes. Finally, if steady state forces are totally omitted (continuous thin lines) a strong
alteration of the branches, also at low vibration amplitudes, is found.

7. CONCLUSIONS

In this paper, the non-linear response of a suspended cable in internal 1:2 resonance
condition, excited by a transversal wind flow, has been analyzed by means of two different
perturbative solutions, called small (SSDS) and large (LSDS) static displacements
solutions, since they are based on a different ordering of the static displacements due to
the steady-state wind forces. Both geometric and aerodynamic non-linearities have been
considered by using consistent models. The approach presents some differences with
respect both to non-linear cable dynamics literature, where the fluid–structure forces are
often modelled in an inaccurate way, and to technical literature on galloping, where
geometrical non-linearities are often ignored. The following conclusions can be drawn. (1)
The SSDS is simpler but reliable only at low wind velocity m. The LSDS furnishes an
excellent approximation of the cable’s postcritical behaviour in a wide range of velocities,
as confirmed by numerical integrations of the Lagrangian non-linear equations. (2) When
the mean wind speed m reaches a critical value, a (prevalently) in-plane oscillation
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(monomodal galloping) occurs; for increasing values of m, the monomodal oscillation
becomes unstable and two-component steady state motions (bimodal galloping) arise.
However, for a certain value of m, the two-component solution disappears and the motion
becomes monomodal again. Then, by increasing m, a re-stabilization of the non-trivial
equilibrium path occurs. For high wind speed a further bifurcation manifests itself, in
correspondence of which a bimodal galloping is triggered. A purely planar motion never
occurs, due both to the steady-state forcing terms and the aerodynamic non-linearities. (3)
The bimodal galloping is not always stable. When the geometric non-linearities are
sufficiently large, a region of amplitude modulate motions arises, after the amplitude has
undergone a Hopf bifurcation. (4) Geometrical non-linearities are very important to model
the problem correctly, since they are mainly responsible for coupling phenomena. (5)
Among the aerodynamic components, the essential terms to preserve all qualitative and
quantitative solution properties are the linear damping terms (bi , i=1, 4), the cubic terms
b8 and b12, and the steady-state forces fi0 (see equations (8)). (6) The non-linear in-plane
frequency V2 always depends on in-plane oscillation amplitudes unlike classic galloping
theory, mainly due to the presence of geometric non-linearities and steady-state forcing
terms. (7) When non-symmetric flow occurs, the Den Hartog criterion has to be modified.
An example in which such a simplistic criterion furnishes a non-protective estimation of
the first galloping bifurcation has been illustrated. (8) Although the results presented here
are strictly valid in internal resonance conditions, the numerical examples have shown that
solutions hold in a sufficiently large region around resonance.
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APPENDIX A: AERODYNAMIC AND MECHANICAL COEFFICIENTS OF THE
DISCRETE MODEL

The bi , fi0 aerodynamic and ci mechanical coefficients of the discrete model (equations
(8)) are:

b1 =2z1v1 +
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Here zi are the modal damping coefficients; c'j , c0j , c1j ( j= d, l) are the first, second and
third derivatives of drag (d) and lift (l) coefficients, with respect to the fluctuating angle
of attack ga ; di are coefficients defined as follows:

d1 =g
1

0

f2 ds, d2 =g
1

0

f'22 ds, d3 =g
1

0

f'21 ds, d4 =g
1

0

f1f2 ds,
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1

0

f2
2 ds, d6 =g

1

0

f2
1f2 ds,

d7 =g
1

0

f3
2 ds, d8 =g

1

0

f1f
2
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1

0

f4
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f1 ds,

d11 =g
1

0

f2
1 ds, d12 =g

1

0

f3
1 ds, d13 =g

1

0

f1f
3
2 ds.

Here f1(s) and f2(s) are the classical vibration modal shapes taken from the linear theory
[9]. In particular, the first symmetric modes are

f1(s)= sin (ps), f2(s)= k0[1− tan (pv/2) sin (pvs)− cos (pvs)],

where k0 is a constant chosen so that f2(1/2)=1 and v=v2/v1.

APPENDIX B: SMALL STATIC DISPLACEMENT SOLUTION

The pi coefficients of the amplitude modulation equations (24) are
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Here the Li coefficients have the expressions
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APPENDIX C: LARGE STATIC DISPLACEMENT SOLUTION

The ri and si coefficients of the equations of motion (26) are

s1 = (−h1 − a2
1h2 − a1c*1 + a2

1a2c*5 + a2c*4 )/k,

s2 = (−c*1 − a1a2c*1 −2a1h2 −2a2h1 +2a2
2c*4 +2a1a2c*5 )/k,
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1a2c3)/k,

s13 = (−h3 +3a1a
2
2c2 −2a1a2h3 + a1c3 +2a2

1a2c3 − a1a
2
2c6 −2a2c6 −3a1c7)/k,

s14 = (−c7 − a2
2c6 + a1a

3
2c2 + a1a2c3 − a2h3)/k,

r1 = (−b1 − a1b2 + a1a2b4 + a2b3)/k, r2 = (−b2 − a2b1 + a2
2b3 + a2b4)/k,

r3 = (−b3 + a1b1 + a2
1b2 − a1b4)/k, r4 = (−b4 − a2b3 + a1a2b1 + a1b2)/k,

r5 = (−b5 + a2
1a2b10 + a1a2b11 + a2b9 − a2

1b6 − a1b7)/k,

r6 = (−b7 +2a1a2b10 + a2b11 +2a2
2b9 + a1a

2
2b11 − a1a2b7 −2a2b5 −2a1b6)/k,

r7 = (−b6 − a2
2b5 + a2b10 + a3

2b9 + a2
2b11 − a2b7)/k, r8 = (a3

1a2b12 − a3
1b8)/k,

r9 = (3a2
1a2b12 −3a2

1b8)/k, r10 = (3a1a2b12 −3a1b8)/k, r11 = (−b8 + a2b12)/k,

r12 = (−b9 + a2
1b7 + a3

1b6 − a2
1b10 − a1b11 + a1b5)/k,

r13 = (−b11 + a1b7 − a1a2b11 +2a1a2b5 −2a2b9 + a2
1a2b7 +2a2

1b6 −2a1b10)/k,

r14 = (−b10 + a1b6 − a2b11 + a1a2b7 − a2
2b9 + a1a

2
2b5)/k,

r15 = (a4
1b8 − a3

1b12)/k. r16 = (3a3
1b8 −3a2

1b12)/k, r17 = (3a2
1b8 −3a1b12)/k,

r18 = (−b12 + a1b8)/k.

Here

k= a1a2 −1, a1 =−
k3

k4 − ṽ2
1
, a2 =−

k4 − ṽ2
2

k3
,

ṽ2
1,2 =

(k1 + k4)3z(k1 + k4)2 −4(k1k4 − k2k3)

2
.

The pi coefficients of the amplitude modulation equations (27) are

p1 =−1
2r1, p2 =−

1
2 0r6ṽ2 +

s2

ṽ110− s

4ṽ1
+

1
21,

p3 =
1
2 $−r5ṽ2L1 + r7ṽ2L8 −

r2ṽ2L11

2ṽ1
−

s1L1

ṽ1
−

r4r6

4
+

r2L11

2
+

r1r6ṽ2

4ṽ1
+

s3L8

ṽ1

+
r4

8ṽ1 0r6ṽ2 +
s2

ṽ11%,
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p4 =−1
2r4, p5 =−3

8r18ṽ
2
2 , p6 =

1
2 0 s8

ṽ2
−

r12ṽ
2
1

ṽ2 10 s

4ṽ2
+

1
21,

p7 =
1
2 $r13ṽ

2
1L8

2ṽ2
+

r1r12ṽ1

2ṽ2
−

r3ṽ1L3

ṽ2
+0 s8

ṽ2
−

r12ṽ
2
1

ṽ2 10− r4

8ṽ2
+

r1

4ṽ21−
s9L8

2ṽ2%,
p8 = p'8 + p08 =$ 1

8ṽ2
(−r2

4 −4r3ṽ2L1)%+$− 1
4ṽ1

(−r2
1 −4r2ṽ1L8)+ s%,

p9 = p'9 + p09 =$14 0s10L10

ṽ2
+

s9L4

2ṽ2
+

3s14

2ṽ2
+2r14ṽ2L10 +

2s10L14

ṽ2
+ r13ṽ2L4 +

s9L7

ṽ2 1%
+6−1

2 $ 1
8ṽ1 0r6ṽ2 +

s2

ṽ11
2

− r7ṽ2L11 +
s3L12

ṽ1
+ r7ṽ2L12 +

s2L5

2ṽ1

+
r6ṽ2

4ṽ1 0r6ṽ2 +
s2

ṽ11+
2s1L7

ṽ1
+

r7ṽ
2
2L12

ṽ1
+

s2L14

ṽ1
+

r6ṽ2L5

2
+

s3L11

ṽ1

+
s6

ṽ1
+

r6ṽ
2
2L5

2ṽ1
+

r7ṽ
2
2L11

ṽ1 %7,
p10 = p'10 + p010 =614 $s12

ṽ2
−

r12ṽ1

2ṽ2 0r6ṽ2 +
s2

ṽ11+
r12ṽ

2
1L5

ṽ2
+

r13ṽ
2
1L11

2ṽ2
+

s8L5

ṽ2
+

r13ṽ
2
1L12

2ṽ2

−
r13ṽ1L11

2
−

1
4ṽ2 0r6ṽ2 +

s2

ṽ110 s8

ṽ2
− r12

ṽ2
1

ṽ21+
s9L11

2ṽ2
+

s9L6

ṽ2
+ r12ṽ1L5

+
s9L12

2ṽ2
+

2s10L13

ṽ2
+

r13ṽ1L12

2 %7+6−1
2 $s2L13

ṽ1
−

1
8ṽ1 0r6ṽ2 +

s2

ṽ11
· 0 s8

ṽ2
− r12

ṽ2
1

ṽ21+
s1L3

ṽ1
+

r6

4 0 s8

ṽ2
− r12

ṽ2
1

ṽ21+
2s1L6

ṽ1
+2r5ṽ1L3 +

3s4

2ṽ1%7,
p11 =−3

8r8ṽ
2
1 , p12 =−

r10ṽ
2
2

4
, p13 =−

r16ṽ
2
1

4
.

Here the Li coefficients have the expressions

L1 =−
ṽ2

ṽ2
1 − ṽ2

2
r2, L2 =0, L3 =

s1 − r5ṽ
2
1

3ṽ2
1

, L4 =−
s3 − r7ṽ

2
2

ṽ2
1 −4ṽ2

2
,

L5 =
s2 − r6ṽ1ṽ2

ṽ2
2 +2ṽ1ṽ2

, L6 =−
s1 + r5ṽ

2
1

ṽ2
1

, L7 =−
s3 + r7ṽ

2
2

ṽ2
1

, L8 =−
r3ṽ1

ṽ2
2 − ṽ2

1
,

L9 =0, L10 =
s10 − r14ṽ

2
2

3ṽ2
2

, L11 =
s9 + r13ṽ1ṽ2

ṽ2
1 −2ṽ1ṽ2

, L12 =
s9 − r13ṽ1ṽ2

ṽ2
1 +2ṽ1ṽ2

,

L13 =−
s8 + r12ṽ

2
1

ṽ2
2

, L14 =−
s10 + r14ṽ

2
2

ṽ2
2

.


